十大网游加速器评测

医用回旋加速器回旋频率与磁场的调谐WO2019114539一种超导T形内导体螺旋形谐振腔

-回旋加速器谐振腔 -谐振腔 -delta

回旋加速器谐振腔

  • 对于电流产生静磁场, 导体磁场强度可直接由积分得到 [ 20 ] :

    $H = \int_{{\varOmega _J}} {\frac{{J \times R}}{{{{\left| R \right|}^3}}}} {\rm{d}}{\varOmega _J}, $

    此中, H 为磁场强度, J $\varOmega _J $ 域内的体分布电流, R 为从源点到场点的矢径, $ \varOmega _J$ 表现分布地区.

    根据计划好的盘旋加速器, 接纳有限元软件, 创建静磁场的1/8模型, 如 图4 所示, 得到的后处置模型如 图5 所示.

    图 4 静磁场模型

    Figure 4. Model of static magnetic field.

    盘算得到差别半径的均匀磁场变革曲线如 图6 , 励磁电流与磁感到强度的曲线见 图7 . 由 图7 可知, $\Delta I$ $\Delta B$ 成正比, 当 $\Delta I =$ $ [\sum\limits_{i = 0}^n {({I_i} - {I_{i - 1}})} ]/n $ = 1 A时, $\Delta B = [\sum\limits_{i = 0}^n {({B_i} - {B_{i - 1}})}]/n $ = 0.0025 T.

    图 5 后处置模型

    Figure 5. Post-processing model.

    图 6 差别半径的均匀磁场变革曲线

    Figure 6. Average magnetic field curve at different radii.

    图 7 励磁电流与磁感到强度的关系

    Figure 7. Relation between the excitation current and the magnetic induction intensity.

    磁路中磁场强度的盘算公式为

    $H = \frac{{N \times I}}{{{L_{\rm{e}}}}}, $

    以是由( 3 )和( 4 )式有

    $B = \mu H = \frac{{N \times I}}{{{L_{\rm{e}}}}}, $

    此中, H 为磁场强度(A/m), B 为磁感到强度(T), μ 为介质的绝对磁导率(H/m), L e 为有用磁路长度(m), N 为线圈数, I 为励磁电流(A).

    由( 5 )式可得, 线圈圈数确定, 有用磁路长度确定, 则

    $\frac{{\Delta I}}{I} \propto \frac{{\Delta B}}{B}, $

    在励磁电流很小的变革范畴内, $\dfrac{{\Delta I}}{I}$ $\dfrac{{\Delta B}}{B}$ 呈近线性关系, 因此可得到

    $\frac{{\Delta I}}{I} = \frac{1}{{199}} = k\frac{{\Delta B}}{B} = k\frac{{0.0025}}{{1.1874}},$

    盘算得 k = 2.3867.

    一个电荷量为 q (C)、质量为 m (kg)的粒子, 在恒定磁场以肯定的速率 v (m/s)在与磁场相垂直的平面上运动, 将受到磁场洛伦兹力的作用而做圆周运动, 圆周运动的曲率半径为 r (m), 由下式可求得盘旋加速器的盘旋频率 f (Hz):

    $f = \frac{\omega }{{2{\text{π}}}} = \frac{{qB}}{{2{\text{π}}m}}.$

    由( 8 )式可得, 粒子确定, 在频率小变革时, 则

    $\frac{{\Delta f}}{f} \propto \frac{{\Delta B}}{B}.$

    磁场发生变革一定引起相位的变革(°), 而磁感到强度 B 需要励磁电流 I 来表现. 由于由磁场引起的相移为

    $\Delta {\varPhi _B} = N\frac{{\Delta f}}{f}{360^ \circ }, $

    那么,

    $\Delta {\varPhi _B} \propto \frac{{\Delta f}}{f} \propto \frac{{\Delta B}}{B} \propto \frac{{\Delta I}}{I},\;\frac{{\Delta I}}{I} = k\frac{{\Delta f}}{f}.$

    根据励磁电流得到束流的相移曲线如 图8 所示, 得到的谐振频率变革曲线如 图9 所示.

    图 8 励磁电流变革导致的相移

    Figure 8. Phase shift caused by change of magnet current.

    图 9 谐振频率随励磁电流变革量的变革

    Figure 9. Relation between resonant frequency and magnet current.

    从 图8 可以看出, 励磁电流增长0.5 A, 相移度数增大了37.8985°, 那么励磁电流增长0.01 A, 相移度数增大0.7580°; 励磁电流淘汰0.01 A, 相移度数减小0.7580°.

    从 图9 可以看出, 励磁电流增长0.5 A, 谐振频率增长了76.429 kHz, 那么谐振频率每增大1.529 kHz, 励磁电流需要增大0.01 A; 谐振频率每淘汰1.529 kHz, 励磁电流需要减小0.01 A.

  • (EN)

    A spiral resonant cavity having a T-shaped inner conductor for a superconducting cyclotron. The resonant cavity is symmetrically distributed in a main magnet valley of a cyclotron, and comprises an upper resonant cavity body (10) and a lower resonant cavity body (9). The upper resonant cavity body (10) and the lower resonant cavity body (9) have symmetrically identical structures, and are electrically connected to each other by means of a first reed (7). The lower resonant cavity body (9) comprises an accelerating electrode Dee plate (1), an inner rod (3), a spiral high-frequency cavity body (4), cavity body water-cooling tubes (5), and an accelerating electrode Dee plate water-cooling tube (6). The accelerating electrode Dee plate (1) and the inner rod (3) are connected by means of a bolt. The accelerating electrode Dee plate water-cooling tube (6) is provided within the accelerating electrode Dee plate (1). The cavity body water-cooling tubes (5) are uniformly brazed on the inner surface of the spiral high-frequency cavity body (4). The compact high-strength resonant cavity effectively solves the problems of insufficient structural strength of a single inner rod of a conventional compact cyclotron and poor cooling effect thereof while satisfying physical design requirements such as the resonant frequency, voltage distribution, and Q value of a resonant cavity.

    (FR)

    La présente invention concerne une cavité résonnante en spirale ayant un conducteur interne en forme de T pour un cyclotron supraconducteur. La cavité résonnante est répartie symétriquement dans un creux d'aimant principal d'un cyclotron, et comprend un corps de cavité résonnante supérieure (10) et un corps de cavité résonnante inférieure (9). Le corps de cavité résonnante supérieure (10) et le corps de cavité résonnante inférieure (9) ont des structures symétriques identiques, et sont électriquement connectés l'un à l'autre au moyen d'une première lame (7). Le corps de cavité résonnante inférieure (9) comprend une plaque de support d'électrode d'accélération (1), une tige interne (3), un corps de cavité haute fréquence en spirale (4), des tubes de re!froidissement d'eau de corps de cavité (5), et un tube de refroidissement d'eau de plaque de support d'électrode d'accélération (6). La plaque de support d'électrode d'accélération (1) et la tige interne (3) sont reliées au moyen d'un boulon. Le tube de refroidissement d'eau de plaque de support d'électrode d'accélération (6) est disposé à l'intérieur de la plaque de support d'électrode d'accélération (1). Les tubes de refroidissement d'eau de corps de cavité (5) sont uniformément brasés sur la surface interne du corps de cavité haute fréquence en spirale (4). La cavité résonnante compacte à haute résistance résout efficacement les problèmes de résistance structurelle insuffisante d'une seule tige interne d'un cyclotron compact classique et d'un faible effet de refroidissement ass!ocié en satisfaisant des exigences de conception physique telles que la fréquence de résonance, la distribution de tension et la valeur Q d'une cavité résonnante.

    (ZH)

    一种超导盘旋加速器T形内导体螺旋形谐振腔,对称分布于加速器主磁铁谷区,其半腔包括上谐振腔腔体(10)与下谐振腔腔体(9),上谐振腔腔体(10)与下谐振腔腔体(9)的布局对称相同,上谐振腔腔体(10)与下谐振腔腔体(9)通过第一簧片(7)电性连接;下谐振腔腔体(9)包括加速电极Dee板(1)、内杆(3)、螺旋形高频腔腔体(4)、腔体水冷管(5)以及加速电极Dee板水冷管(6),加速电极Dee板(1)与内杆(3)通过螺栓连接,加速电极Dee板(1)的内部设置有加速电极Dee板水冷管(6);螺旋形高频腔腔体(4)的内表面匀称钎焊有腔体水冷管(5)。紧凑型高强度谐振腔在满意了谐振腔谐振频率、分布电压以及Q值等物理计划需求的条件下,有用解决了传统的紧凑型盘旋加速器单内杆/布局强度不足,冷却效果不佳的问题。

    部分文献由于文件较大,PDF全文下载时轻易出现504错误,提议您优先选择CAJ下载或PDF分章下载。

    【作者】 曹磊 ;

    【导师】 樊明武 ;

    【作者基本信息】 华中科技大学 , 电磁场与微波技能, 2009, 硕士

    【摘要】 盘旋加速器正被越来越广泛地应用于PET(Positron Emission Tomography)诊断、同位素生产和质子治疗等医学范畴。CYCHU-10是一台计划能量为10 MeV的低能强流紧凑型质子盘旋加速器,本文具体介绍了作为高频系统重要构成部分的谐振腔的计划、盘算与测!试過逞,完成了谐振腔的电磁、热以及布局的次序耦合场分析,对末级功率放大器四极管建模拟真,并对功率耦合系统进行了开端盘算。扼要介绍了应用在盘旋加速器中的同轴谐振腔的分类,给出了同轴谐振腔的基本特性参数及相应的盘算方法,并回首了现在谐振腔分析中最常接纳的两种方法的原理和典型盘算過逞。计划了CYCHU-10的谐振腔外形和尺寸,使用三维数值盘算软件ANSYS和CST MWS对谐振腔进行了盘算,给出了机器尺寸对谐振频率的影响关系,为后期的谐振腔的加工、安装和调试运行提供了理论参考,别的,我们还制作了谐振腔体的1:1比例木模,并完成了开端的冷测试验,结果表明谐振频率的丈量值和盘算值吻合精良。借助ANSYS实现了CYCHU-10谐振腔的电磁场、热以及布局应力分析,表现了谐振腔内的电磁场、温度和形变分布结果。实际工作状态时的谐振腔会吸取高频功率发热而导致变形,盘算了谐振腔外形尺寸的微小变革引起的谐振频率的漂移,为频率微调电容板的计划提供了肯定的权衡指标。介绍了创建应用于末级功率放大器中的四极管电路仿真模型的方法,给出了电子管4CW 10,000B的ADS四端口元件模型,其常流特性曲线与生产商提供的测!试曲线在管子工作范畴内吻合,具体展示了10 kW功率放大器各部分电路参数的计划過逞,画出了系统的电路原理图,并演示了开端的仿真结果。最后,对电感耦合环进行了计划和盘算。 更多 还原

    【Abstract】 Cyclotrons are being widely applied in medical area, such as isotope production for positron emission tomography (PET), and proton therapy. CYCHU-10 is a 10 MeV high-current compact proton machine. This thesis presents the design, calculation and test processes of cyclotron Dee cavities. As the most important components of the radio frequency (RF) system, the coupled electromagnetic, thermal and structural sequential analysis of the cavities is carried out. Model of the tetrode circuit used as the final power amplifier was set up, and the power coupling circuit was analyzed.The categories of coaxial type resonant cavities used in cyclotrons are introduced. Their characteristic parameters and calculation methods are also given. Two main principles and typical computation processes for analyzing coaxial type cavities at present are reviewed in detail.We developed the basic shapes and dimensions and carried out the simulations for the CYCHU-10 cavities with 3D numerical codes ANSYS and CST MWS. The influences of mechanical errors on resonance frequency are analyzed, which will provide a theoretical reference for processing, installation and commissioning of cavities. In addition, the 1:1 scale cavity prototype is constructed and the cold test is done also. The measured resonance frequency is in good agreement with the simulated one.Electromagnetic, thermal and structural analysis for the CYCHU-10 cavities is realized by means of ANSYS. The distributions of electromagnetic field, temperature and displacements in cavities are illustrated. The cavities will deform due to high frequency power dissipation under practical operation conditions. The frequency shift is obtained after remodeling the deformed cavities. This work helps to evaluate the performances of capacitive frequency trimmer design.The modeling method of the tetrode used as the final power amplifier is presented. The ADS four ports model of the tetrode 4CW 10,000B is demonstrated and comparison of the constant current characteristic curves with those given by manufacturer shows a good agreement in a reasonable operating range of the tube. The design procedure of the 10 kW power amplifier parameters is given in detail, the circuit schematic is drawn and the initial simulation results are shown. Finally, we designed the inductive coupling loop and calculated the reflection coefficient of the coupling system. 更多 还原

    本文网址: http://www.2meiyuan.com/p/2021220201111_6706_3690273437/home